我们知道HashMap中默认的存储大小就是一个容量为16的数组,所以当我们创建出一个HashMap对象时,即使里面没有任何元素,也要分别一块内存空间给它,而且,我们再不断的向HashMap里put数据时,当达到一定的容量限制时(这个容量满足这样的一个关系时候将会扩容:HashMap中的数据量>容量*加载因子,而HashMap中默认的加载因子是0.75),HashMap的空间将会扩大,而且扩大后新的空间一定是原来的2倍,我们可以看put()方法中有这样的一行代码:
int newCapacity = oldCapacity * 2;
所以,重点就是这个,只要一满足扩容条件,HashMap的空间将会以2倍的规律进行增大。假如我们有几十万、几百万条数据,那么HashMap要存储完这些数据将要不断的扩容,而且在此过程中也需要不断的做hash运算,这将对我们的内存空间造成很大消耗和浪费,而且HashMap获取数据是通过遍历Entry[]数组来得到对应的元素,在数据量很大时候会比较慢,所以在Android中,HashMap是比较费内存的,我们在一些情况下可以使用SparseArray和ArrayMap来代替HashMap。
简单说一下SparseArray的应用场景:
虽说SparseArray性能比较好,但是由于其添加、查找、删除数据都需要先进行一次二分查找,所以在数据量大的情况下性能并不明显,将降低至少50%。
满足下面两个条件我们可以使用SparseArray代替HashMap:
- 数据量不大,最好在千级以内
- key必须为int类型,这中情况下的HashMap可以用SparseArray代替:
HashMap<Integer, Object> map = new HashMap<>();
用SparseArray代替:
SparseArray<Object> array = new SparseArray<>();
重点讲一下ArrayMap:
ArrayMap是一个<key,value>映射的数据结构,它设计上更多的是考虑内存的优化,内部是使用两个数组进行数据存储,一个数组记录key的hash值,另外一个数组记录Value值,它和SparseArray一样,也会对key使用二分法进行从小到大排序,在添加、删除、查找数据的时候都是先使用二分查找法得到相应的index,然后通过index来进行添加、查找、删除等操作,所以,应用场景和SparseArray的一样,如果在数据量比较大的情况下,那么它的性能将退化至少50%。
添加加数据
public V put(K key, V value)
获取数据
public V get(Object key)
删除数据
public V remove(Object key)
特有方法
它和SparseArray一样同样也有两个更方便的获取数据方法:
public K keyAt(int index)
public V valueAt(int index)
ArrayMap应用场景
- 数据量不大,最好在千级以内
- 数据结构类型为Map类型
ArrayMap<Key, Value> arrayMap = new ArrayMap<>();
【注】:如果我们要兼容aip19以下版本的话,那么导入的包需要为v4包
import android.support.v4.util.ArrayMap;
那什么时候使用SparseArray、ArrayMap,假设数据量都在千级以内的情况下:
1、如果key的类型已经确定为int类型,那么使用SparseArray,因为它避免了自动装箱的过程,如果key为long类型,它还提供了一个LongSparseArray来确保key为long类型时的使用
2、如果key类型为其它的类型,则使用ArrayMap
文章评论