Android性能优化之使用SparseArray代替HashMap
最近在重构one的项目,其中用HashMap来缓存ActivityGroup加载过的View,Android Studio给出了一个警告,之前考虑项目进度没怎么在意,这次仔细看了下提示,如下:
Use new SparseArray<View> (...) instead for better performance
意思就是说用SparseArray来替代,以获取更好的性能。对SparseArray根本不熟悉,甚至都没听过,第一感觉应该是Android提供的类,于是ctl+鼠标左键进入SparseArray的源码,果不其然,确实是Android提供的一个工具类,部分源码如下:
/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.util; import com.android.internal.util.ArrayUtils; import com.android.internal.util.GrowingArrayUtils; import libcore.util.EmptyArray; /** * SparseArrays map integers to Objects. Unlike a normal array of Objects, * there can be gaps in the indices. It is intended to be more memory efficient * than using a HashMap to map Integers to Objects, both because it avoids * auto-boxing keys and its data structure doesn't rely on an extra entry object * for each mapping. * * <p>Note that this container keeps its mappings in an array data structure, * using a binary search to find keys. The implementation is not intended to be appropriate for * data structures * that may contain large numbers of items. It is generally slower than a traditional * HashMap, since lookups require a binary search and adds and removes require inserting * and deleting entries in the array. For containers holding up to hundreds of items, * the performance difference is not significant, less than 50%.</p> * * <p>To help with performance, the container includes an optimization when removing * keys: instead of compacting its array immediately, it leaves the removed entry marked * as deleted. The entry can then be re-used for the same key, or compacted later in * a single garbage collection step of all removed entries. This garbage collection will * need to be performed at any time the array needs to be grown or the the map size or * entry values are retrieved.</p> * * <p>It is possible to iterate over the items in this container using * {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using * <code>keyAt(int)</code> with ascending values of the index will return the * keys in ascending order, or the values corresponding to the keys in ascending * order in the case of <code>valueAt(int)</code>.</p> */ public class SparseArray<E> implements Cloneable { private static final Object DELETED = new Object(); private boolean mGarbage = false; private int[] mKeys; private Object[] mValues; private int mSize; /** * Creates a new SparseArray containing no mappings. */ public SparseArray() { this(10); } /** * Creates a new SparseArray containing no mappings that will not * require any additional memory allocation to store the specified * number of mappings. If you supply an initial capacity of 0, the * sparse array will be initialized with a light-weight representation * not requiring any additional array allocations. */ public SparseArray(int initialCapacity) { if (initialCapacity == 0) { mKeys = EmptyArray.INT; mValues = EmptyArray.OBJECT; } else { mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity); mKeys = new int[mValues.length]; } mSize = 0; } @Override @SuppressWarnings("unchecked") public SparseArray<E> clone() { SparseArray<E> clone = null; try { clone = (SparseArray<E>) super.clone(); clone.mKeys = mKeys.clone(); clone.mValues = mValues.clone(); } catch (CloneNotSupportedException cnse) { /* ignore */ } return clone; } /** * Gets the Object mapped from the specified key, or <code>null</code> * if no such mapping has been made. */ public E get(int key) { return get(key, null); } /** * Gets the Object mapped from the specified key, or the specified Object * if no such mapping has been made. */ @SuppressWarnings("unchecked") public E get(int key, E valueIfKeyNotFound) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i < 0 || mValues[i] == DELETED) { return valueIfKeyNotFound; } else { return (E) mValues[i]; } } /** * Removes the mapping from the specified key, if there was any. */ public void delete(int key) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i >= 0) { if (mValues[i] != DELETED) { mValues[i] = DELETED; mGarbage = true; } } } /** * @hide * Removes the mapping from the specified key, if there was any, returning the old value. */ public E removeReturnOld(int key) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i >= 0) { if (mValues[i] != DELETED) { final E old = (E) mValues[i]; mValues[i] = DELETED; mGarbage = true; return old; } } return null; } /** * Alias for {@link #delete(int)}. */ public void remove(int key) { delete(key); } /** * Removes the mapping at the specified index. */ public void removeAt(int index) { if (mValues[index] != DELETED) { mValues[index] = DELETED; mGarbage = true; } } /** * Remove a range of mappings as a batch. * * @param index Index to begin at * @param size Number of mappings to remove */ public void removeAtRange(int index, int size) { final int end = Math.min(mSize, index + size); for (int i = index; i < end; i++) { removeAt(i); } } private void gc() { // Log.e("SparseArray", "gc start with " + mSize); int n = mSize; int o = 0; int[] keys = mKeys; Object[] values = mValues; for (int i = 0; i < n; i++) { Object val = values[i]; if (val != DELETED) { if (i != o) { keys[o] = keys[i]; values[o] = val; values[i] = null; } o++; } } mGarbage = false; mSize = o; // Log.e("SparseArray", "gc end with " + mSize); } ……
mSize++;单纯从字面上来理解,SparseArray指的是稀疏数组(Sparse array),所谓稀疏数组就是数组中大部分的内容值都未被使用(或都为零),在数组中仅有少部分的空间使用。因此造成内存空间的浪费,为了节省内存空间,并且不影响数组中原有的内容值,我们可以采用一种压缩的方式来表示稀疏数组的内容。
继续阅读SparseArray的源码,从构造方法我们可以看出,它和一般的List一样,可以预先设置容器大小,默认的大小是10:
public SparseArray() {
this(10);
}
public SparseArray(int initialCapacity) {
initialCapacity = ArrayUtils.idealIntArraySize(initialCapacity);
mKeys = new int[initialCapacity];
mValues = new Object[initialCapacity];
mSize = 0;
}
再来看看它对数据的“增删改查”。
public void put(int key, E value) {}
public void append(int key, E value){}
修改数据起初以为只有setValueAt(int index, E value)可以修改数据,但后来发现put(int key, E value)也可以修改数据,我们查看put(int key, E value)的源码可知,在put数据之前,会先查找要put的数据是否已经存在,如果存在就是修改,不存在就添加。
public void put(int key, E value) {
int i = binarySearch(mKeys, 0, mSize, key);
if (i >= 0) {
mValues[i] = value;
} else {
i = ~i;
if (i < mSize && mValues[i] == DELETED) {
mKeys[i] = key;
mValues[i] = value;
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
// Search again because indices may have changed.
i = ~binarySearch(mKeys, 0, mSize, key);
}
if (mSize >= mKeys.length) {
int n = ArrayUtils.idealIntArraySize(mSize + 1);
int[] nkeys = new int[n];
Object[] nvalues = new Object[n];
// Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
System.arraycopy(mValues, 0, nvalues, 0, mValues.length);
mKeys = nkeys;
mValues = nvalues;
}
if (mSize - i != 0) {
// Log.e("SparseArray", "move " + (mSize - i));
System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
}
mKeys[i] = key;
mValues[i] = value;
}
}
所以,修改数据实际也有两种方法:
public void put(int key, E value)
public void setValueAt(int index, E value)
最后再来看看如何查找数据。有两个方法可以查询取值:
public E get(int key)
public E get(int key, E valueIfKeyNotFound)
其中get(int key)也只是调用了 get(int key,E valueIfKeyNotFound),最后一个从传参的变量名就能看出,传入的是找不到的时候返回的值.get(int key)当找不到的时候,默认返回null。
查看第几个位置的键:
public int keyAt(int index)
有一点需要注意的是,查看键所在位置,由于是采用二分法查找键的位置,所以找不到时返回小于0的数值,而不是返回-1。返回的负值是表示它在找不到时所在的位置。
查看第几个位置的值:
public E valueAt(int index)
查看值所在位置,没有的话返回-1:
public int indexOfValue(E value)
最后,发现其核心就是折半查找函数(binarySearch),算法设计的很不错。
private static int binarySearch(int[] a, int start, int len, int key) {
int high = start + len, low = start - 1, guess;
while (high - low > 1) {
guess = (high + low) / 2;
if (a[guess] < key)
low = guess;
else
high = guess;
}
if (high == start + len)
return ~(start + len);
else if (a[high] == key)
return high;
else
return ~high;
}
相应的也有SparseBooleanArray,用来取代HashMap<Integer, Boolean>,SparseIntArray用来取代HashMap<Integer, Integer>,大家有兴趣的可以研究。
SparseArray是android里为<Interger,Object>这样的Hashmap而专门写的类,目的是提高效率,其核心是折半查找函数(binarySearch)。在Android中,当我们需要定义
HashMap<Integer, E> hashMap = new HashMap<Integer, E>();
时,我们可以使用如下的方式来取得更好的性能.
SparseArray<E> sparseArray = new SparseArray<E>();
文章评论